Paradigm shift

Moving beyond roles and permissions
to a fine-grained access control

Access Control?

Can this user do that action?

An access control method
decides whether an action
Is allowed or not

Sam

Guest

Ada

Edlitor

Paradigm
shift

Blog-post

Chiara

Admin

Paradigm

shift '

Sam Blog-post

Guest

Paradigm

shift '

Sam Blog-post

Guest

Fine-grained
Access control

Take back control!

Access control decisions
are made based on
resource type

Example

An editor can edit
all blog-posts

Example

An admin can delete
all blog-posts

Sam

Guest

Ada

Edlitor

Paradigm
shift

Blog-post

Chiara

Admin

Fine
grained

mmxww
0000000, S5
AR 0020%0 €30502

050
X4
%

IS
G005 0%00%8
020 % %%
2 %%°
IIKKS
%%

& & 4

Access control decisions
are made for a specific
resource or situation

Example

An owner of d post can
delete their own post

Sam

Ada

Chiara

Paradigm

Sam’s
Blog-post

Sam’s second
Blog-post

Adad’s
Blog-post

Chiara’s
Blog-post

shift

Sam

Paradigm

Sam’s
Blog-post

Sam’s second
Blog-post

shift

Example

A member of an
organization can view dll
files belonging to that
organization

Sam
Okta

Ana
Okta

Okta

Jane
Acme

Acme

Paradigm

Okta’s
Presentations

Okta’s
Blog-posts

Okta’s
Strategy doc

Acme’s
Presentations

shift

Paradigm

shift '

Okta’s
Sam Presentations
Okta
Okta \V|ew Okta’'s
Blog-posts
Ana
Okta

Okta’s

Strategy doc

Example

An employee can access
the CRM during office
hours

Sam
Okta

Ana
Okta

Okta

——————

Paradigm
shift

Sam
Okta

Ana
Okta

Okta

——————

I\

Paradigm
shift

Paradigm .
shift

Coarse Fine
grained grained

Smaller applications User-generated content

No user-generated content Multi tenant applications
Sharing resources
Sensitive data
Contextual or environmental
decisions

Role-based
Access control

Roles and permissions define access

Decisions are based on
permissions assigned to a
user via roles

Roles

Guest

Admin

Editor

Paying customer

Enterprise

Paradigm
shift

Paradigm .
shift

View
Create
Edit

Permissions Delete

AuthO
Roles and permissions

RBAC straight out of the box

Paradigm .
shift

Cat person

nnnnnnnnnnn

Manage roles for your users in the user
management section of the dashboard

©00 C RoleDenis x o+

@ % manage.auth0.com/dashboard/eu/sambegojroles/rol_tapKawDNVp3RXOVZ/permissions % 0

orvam Qe Oiscussyourneess ocumentton Paradigm
shift

Cat person

7 Branding

Security

e permission ~ Description
Wl Monitoring Lo
* Extensions « Back to Roles
o Cat person

Role D rol_t3pKénDnVpdRxevz

Add Permissions to this Role. Users who have this Role will receive all Permissions below that match|
request.

Permission ~ Description

See all cats

Manage roles for your users in the user
management section of the dashboard

O APt Detas

S metat Paradigm
shift

Activity =

- By nestjs-api

»

Authentication

8 Organizations

User Management o
" Add a Permission

Branding

Define the permissions (scopes) that this API uses
¥ Security
Permission* Description”
2 Actions
+ Add
L. Auth Pipeline
Wl! Monitoring o
List of Permissions
¢ Marketplace
) These are allthe permissions that this AP uses
* Extensions
& Settings Permission Description
at See all cats 8

Add an Authorization Details Type oo-ox

Define the t types that this AP uses.

List of Authorization Details Types

These are all the authorization_details types that this APl uses.

Types

There are no authorization details types to display

Manage permissions for your APIs

®0 0 O ADewis B .

« C % manage.auth0.com/dashboardjeu/sambegojapis/60b8a3b9fabb6100d1948c90/permissions

* ©
U B e Dscussyournasas Documentaion 0 Paradigm
shift

% Activity

: nestjs-api

2 Autnontcaton cuick . [:] "

8 Organizations

User Management

Add a Permission

s Quickstart Settings Machine To Machin
. 9 Define opes) that this APl
¢ Securty
Permission Description
> Actions
i Add a Permission
Auth Pipeline
1l! Monitoring

Define the permissions (scopes) that this API uses.
List of Permissions

* Marketplace .
hese

the permissions that this API

Permission * Description *

Extensions

sottings Permission Desericiion

See al cats
List of Permissions

These are all the permissions that this APl uses.
Add an Authorization Details Type aoo-on

types

s API

Permission

Description

read:cats

See all cats

List of Authorization Details Types

These are all the 1 types that this API

Add an Authorization Details Type aoo-on

Types
Define the authorization_ detsils types that this APl uses

There are no authorization detalls types to

Type *

Manage permissions for your APIs

Paradigm '
shift

RBAC Settings Enable RBAC

@

If this setting is enabled, RBAC authorization policies will be enforced for this
API. Role and permission assignments will be evaluated during the login
transaction.

Add Permissions in the Access Token

@

If this setting is enabled, the Permissions claim will be added to the access
token. Only available if RBAC is enabled for this API.

Add permissions to the access tokens
issued by AuthO

© Actions B+

%5 manage.auth0.com/dashboardjeujsambego/actionslibrary/details/704700b4-72bf-def4-bad5-d63d3bc31893

b Paradigm
“ bl i Q Search Discuss your needs Documentation oy e g .
DEVELOPMENT shift

-
Activity « Custom Actions

&~ Applications . .
< > Add permissions to ID Token [©] Version History Save Draft

2 Authentication

Login / F ogin, Runtime: Node 16 (Not You have unsaved changes

Organizations

®¢ User Management

& This action was built using an outdated runtime. Upgrade

¢ Branding
¥ Security
& Actions Secrets
Flows ¢ Secrets allow you to securely define secret
ms EARLY or privileged values that can be accessed in
5 your running code as properties of the
ey event.secrets object.
L. Auth Pipeline authe = (*aut
domain (w] exports.onExecutePostLogin = (event, api) => {
4| Monitoring = ; Ty :
clientId 0 client = authe.»
* Marketplace — :
domain: event.secrets. domaln,

® Extensions clientSecret J clientId: event.secrets.clientId,
clientSecret: event.secrets.clientSecret,
£ Settings Add Secret ;
permissions = client.getUserPermissions({id: event.user.user_id

error => console.error(error

api.idToken.setCustomClaim($ permissions , permissiol

Get support

ew Samples

Add permissions to the ID token trough
AuthO actions

Watch out for token bloat!

tribute-based
Access control

Different kinds of attributes
influence the decision

Decisions dre based on
attributes related to the
action being evaluated

User
Environment

Resource

Attributes Action

Paradigm .
shift

Role

Organization

User Security clearance

Environment

Time of day
Location of data
Code-freeze

Current threat level

Paradigm
shift

Paradigm .
shift

Creation date

owner

R eSO u rce Data Sensitivity

Read
Write

Action elote

Iicy-based
Access control

Combine attributes
in policies

Declare scenarios with
attributes in one or more

policy

A policy engine will
evaluate access control
decisions

Example

An accountant can upload
an invoice, if it is during
their working hours.

Example

An accountant can upload
an invoice, if it is during
their working hours.

Example

An accountant can upload
an invoice, if it is during =~ ==
their working hours.

Example

An accountant can upload
an invoice, if it is during
their working hours.

Example

An accountant can upload
an invoice, if it is during

their working hours.
N~

Example

Any engineer can write to
any file, when we are not
having a code freeze.

Example

Any engineer can write to
any file, when we are not
having a code freeze.

Example

Any engineer can write to
any file, when we are not ===
having a code freeze.

Example

Any engineer can write to
any file, when we are not
having a code freeze.

Example

Any engineer can write to
any file, when we are not

having a code freeze.
I e

ABAC is often used for
managing infrastructure
access

Scendarios where decisions
are made on a limited set
of data, the attributes

pen Policy Agent

Open-source policy engine

OPA is a decision-engine
that provides a way of
declaratively writing
policies as code.

It uses these policies as
part of a decision-making
process.

Paradigm '
shift

Policy
Your Rego
infrastructure
or)
application
Data
JSON

Example

Block request coming from

an origin on our block-list.

Paradigm .
shift

deny[reason] {
disallowedOrigins := ["blocked.com", "malicious.com"]

some input.request.origin in disallowedOrigins
reason := sprintf("origin %s has been blocked", [input.request.origin])

A policy written in the Rego language

used by OPA

Paradigm '
shift

1

1

1 PR s

1 request.origin in
1

1

1

disallowedOrigins
(3 3 . "bl k d B e J
} origin: ocked.com POIICy
Rego
Server
Data
e JSON

|
1
disallowedOrigins : [...] :
1
1

ABAC isn't optimized for
large amounts of data
that's continually
changing.

Rlationship-based
Access control

Look for relationships between
resources

Access control decisions
are based on relationships
between a consumer and
ad resource

A consumer can be a user,
group, folder, another
resource...

Example

Sam is the owner of this
slidedeck

Example

Sam is the owner of this
slidedeck —x===m

Example

Sam is the owner of this
slidedeck

Example

Sam is the owner of this
slidedeck

There are direct and
indirect relationships.

Direct relationships are
explicitly defined

Indirect relationships are
derived from the direct
relationships

Example

Sam is a member of AuthO,
and can therefor view all
slide decks in our
organisation.

EEEEEEE

Sam is indirectly related to
this slide deck.

Paradigm .
shift

OpenFGA

An open-source ReBAC solution, a
CNCF sandbox project

OpenFGA is a
decision-engine that
makes decisions based on
an authorization model in
combination with tuples
saved in a database.

These tuples are the direct
relationships.

Your
application

OpenFGA

Paradigm
shift

Authorization
model

Database
with tuples

Example

Check if a user can view a
GitHub repository

type user Paradigm .
shift

type repository
relations
define owner: [user]
define viewer: [user] or owner
define can_view: viewer or owner

{

user: "user:.sam’,
relation: "owner",
object: "repository:fga-demo"

}

An OpenFGA authorization model and

tuple

Your
application

{

}

user: "user:sam"

relation: "can_view"
object: "repository:..."

OpenFGA

Paradigm '
shift

Authorization
model

Database

{

]
" " I
user: "user:sam", |
relation: "owner", :
object: "repository:..." |

1

mple

Check if a user
can commit to a GitHub
repository

Paradigm .
shift

type user

type organization
relations
define member: [user]
define repo_writer: [user] or member

type repository
relations
define owner: [organization]
define can_commit: repo_writer from owner

An OpenFGA authorization model

Paradigm .
shift

user: "user:.sam",

relation: "member",

object: "organization:okta“
o il

user: "organization:okta",

relation: "owner",

object: "repository:fga-demo"

}

OpenFGA tuples

Your
application

{

}

user: "user:sam"

relation: "can_commit",
object: "repository:..."

OpenFGA

Paradigm

shift
i aefine can_commit: i
: repo_writer from owner :
Authorization
model

Database
with tuples

P .

1 user: "user:sam"

: relation: "member"

| object: "organization:okta"
bo

| user: "organization:okta",

1 relation: "owner"

: object: "repository:fga-demo"
:

Example

Retrieval-augmented
generation (RAG): Retrieve
financial documents

assigned to a user
B o

Paradigm .
shift

type user

type document
relations
define owner: [user]
define can_view: [user] or owner

An OpenFGA authorization model

{ Porodigm .
user: "user:sam", shift

relation: "owner",

object: "document:paycheck-jan-2024-sam"”
HoA

user: "user:hr-rudy”,

relation: "can_view",

object: "document:paycheck-jan-2024-sam"”
HoA

user: "user:jane",

relation: "owner",

object: "document:paycheck-jan-2024-jane”
HoA

user: "user:hr-rudy",

relation: "can_view",

object: "document:paycheck-jan-2024-jane”

}

OpenFGA tuples

Question

LLM

Sam made x.x $
in January

How much $ did
Sam make in

january?

RAG
Retriever

Load relevant
paychecks

Filter documents
the user can
view

Paradigm

shift

Vector store

There’'s an SDK for that!

a0.to/ato-fga-ai

Paradigm '
shift

Okta FGA

A managed OpenFGA service

Model Explorer | FGA

SELECT SToRE ®

- drive v

4 Getting Started

Model

Tuple Management
Developer Mode

% Settings

detine

an_delete: owner or owner from parent
a owner or owner fron parent

a + viewer or owner or viewer fron parent

an_write: owner or owner parent

is_owned: owner

is_shared: can_view but not owner
par older]

an_c 1le: owner or owner from parent

a folder: owner or owner fron parent

an_ owner or owner parent

an_) viewer or owner or viewer fron parent

a r

e ri=] or owner or viewer from parent

@

Preview

@ relatior

Zoom In

Guided Tour

ZoomOut Reset

Paradigm
shift

5
6

owner or owner

or owner
or owner
iew but not owner
er]
tle: owner or ouner from parent

te_folder: owner or owner from parent
owner or owner from parent
viewer or owner or viewer fron parent

e ri+] or owner or viewer from parent

Guided Tour

5. Tuples should not contain Personal Id: bie Information. Learn more

Preview Q Tuples Assertions Query >

+ Add Tuple + Add Assertion

e user:autho|65acf64e181(2c62663cd9a P

= folder:8612bb93-aaBc-48a8-9520-d99682.

viewer
seR user:auth0|65faef64e1812c62b63cd9a 0
BJEC file:49304b83-13bc-483c-a4fe-8b60f72db.
RELATION viewer

usen user:google-0auth2|1135799221734285377... /9

file:62f35382-c920-464d-a132-57953752.

RELATION owner allow you to save a list of st tests

sen folder:6162898-c5bc-47db-2021-140c210.

>

file:62135382-c920-464d-2132-57953752

parent

sen user:google-oauth2|1135799221734285377.

Y

BiECT file:eQ1161dd-59fc-4332-85db-9bctbaf73b.

RELATION owner

€ folder:6162€898-c5bc-47db-a021-140c210.

Y

file:e0161dd-59fc-4332-85db-9bcfb

RELATION parent

Paradigm
shift

ReBAC is a great solution
for applications that deal
with user-generated
content, that is constantly
changing

Centralized access
control

Where should your authorization
decisions be made?

Modern ABAC and ReBAC
solutions have a decision
engine that centralizes
decisions from your
applications

This is useful for audits!

All applications will use the
same decisions

Hybrid*
access control

Modern tools can support multiple
paradigms

Some access control
solutions have support for
multiple methods, working
around limitations inherent
to their original strategy

Limitatio

with dynamic data

OPAL adds an
administration layer to
OPA, to keep policies and
data in sync across agents

TOPAZ brings “real-time,
policy based access
control for applications
and APIs” to OPA

lllllll

ReBAC does not take
context or environment
INto consideration

OpenFGA has ABAC
support through
contextual tuples and
conditions

Standards?

Available authorization standards

XACML, extensible access
control markup language

Paradigm
shift

AUthZEN provide standard
mechanisms to
commuhnicate
authorization related
information from different
entities

AUthZEN is currently a fourth
(and final?) draft at the
OpeniD Foundation.

Paradigm .
.{ shift

"subject": {
"type": "user”,
"id": "sam",
}
"action": {
"name” . "can_view",
}
"resource": {
"type": "document”,
"id": "paycheck-jan-2025-sam”,
}
"context": {
}

}

AuthZEN evaluation payload

pdp.example.com/access/evaluation

Paradigm .
shift

{

"decision"”: true

}

AuthZEN evaluation response

pdp.example.com/access/evaluation

Paradigm .
shift

{
"decision": false,
"context": {
"id": "e",
"reason_admin": {
"en”: "No relation between user and object”
I
"reason_user": {
"en-403": "Not allowed. Contact your administrator”,
"it-403": "Non consentito. Contatta 1l'amministratore”
}
}
}

AuthZEN evaluation response

/evaluation

Paradigm .
.{ shift

"subject": {
"type": "user”,
}
"action": {
"name” . "can_view",
}
"resource": {
"type": "document”,
"id": "paycheck-jan-2025-sam", « Object
}
"context": {
}

}

AuthZEN evaluation payload for

OpenFGA

Paradigm .
{ shift

"subject": {
Iltypell: Iluserll’
"id": "sam", User attribute
g
"action": {
"name” : "can_view",
g
"resource": { Resource attribute
"type": "document”,
"id": "paycheck-jan-2025-sam", «
g
"context": {
}

}

AuthZEN evaluation payload for OPA

Paradigm .
shift

{
"subject": {
"type": "user”,
}
"action": {
"name” . "can_view",
}
"resource": {
"type": "document”,
"id": "paycheck-jan-2025-sam”,
}
"context": {
}
}

AuthZEN subject search payload

pdp.example.com/access/subject

Paradigm .
shift

{
"results": [
{
"type": "user”,
"id": "sam"
|
{
"type": "user”,
"id": "jane"
}
]
}

AuthZEN subject search response

pdp.example.com/access/subject

Paradigm .
shift

{
"subject": {
}
"action": {
"name” . "can_view",
}
"resource": {
"type": "document”,
"id": "paycheck-jan-2024-sam", . Object
}
"context": {
}
}

AuthZEN subject search payload for

OpenFGA

Paradigm .
shift

{
"subject": {
"type": "user", User attribute
b
"action": {
"name” : "can_view",
b
"resource": { Resource attribute
"type": "document”,
"id": "paycheck-jan-2024-sam", .
b
"context": {
b
b

AuthZEN subject search payload for

OPA

Paradigm .
shift

{
"subject": {
"type": "user”,
"id": "sam"
}
"action": {
"name” . "can_view",
}
"resource": {
"type": "document”,
}
"context": {
}
}

AuthZEN resource search payload

pdp.example.com/access/resource

Paradigm .
shift

{
"results": [
{
"type": "document”,
"id": "paycheck-jan-2025-sam”
b
{
"type": "document”,
"id": "paycheck-feb-2625-sam"
b
]
b

AuthZEN resource search response

pdp.example.com/access/resource

Paradigm .
shift

{
"subject": {
"type": "user”,
"id": "sam"
g
"resource": {
"type": "document”,
"id": "paycheck-jan-2025-sam”,
g
"context": {
}
}

AuthZEN action search payload

pdp.example.com/access/action

Paradigm .
shift

{
"results": [
{ 1 1
name": "can_view"
|
]
}

AuthZEN action search response

pdp.example.com/access/action

Let's recap

TL,DR

There are different access
control strategies, they all
have their purpose!

RBAC is good for
applications that don't let
their users generate
content.

ABAC is great for

fine-grained control based
on a limited set of
attributes.

ReBAC can evaluate a
large database of direct
relationships, and deduct

iIndirect ones from this
dataset.

This is perfect for complex
applications with an ever
changing set of data that
influences the access
control decision.

AUthZEN is an open
standard to provide @
common way to relay
access control decisions,
regardless of strategy or
decision engine

Sam Bellen

Principal developer advocate at AuthO

@sambego
sambego.tech

Ledrn more

a0.to/ato-fga

@sambego
sambego.tech

FiInd these slides

slides.sambego.tech/paradigm-shift

@sambego
sambego.tech

Thank you!

Paradigm shift

Moving beyond roles and permissions
to a fine-grained access control

